
 underlined attributes are REQUIRED - 1 -

The Storage Resource Manager Interface Specification
Version 2.1

Final Candidate 2
(SRM.spec.v2.1.Final.Candidate2.Oct20.doc)

(Modifies SRM.spec.v2.1.Final.Candidate1.July17.doc)

Contributors to this document are:

EDG-WP2: Peter Kunszt, Heinz Stockinger, Kurt Stockinger, Erwin Laure
EDG-WP5: Jean-Philippe Baud, Stefano Occhetti, Jens Jensen, Emil Knezo,

Owen Synge, Olof Barring
JLAB: Bryan Hess, Andy Kowalski, Chip Watson

FermiLab: Don Petravick, Timur Perelmutov, Rich Wellner
LBNL: Junmin Gu , Arie Shoshani, Alex Sim

This version prepared by:

Junmin Gu, Alex Sim, Arie Shoshani
Lawrence Berkeley National Laboratory

It reflects in part decisions discussed in

http://sdm.lbl.gov/srm-wg/doc/SRM.v2.1.joint.func.design.doc

Introduction

This document contains the interface specification of SRM 2.1. It incorporates the
functionality of SRM 2.0 (see http://sdm.lbl.gov/srm-wg/doc/srm.methods.v2.0.doc), but
is much expanded to include additional functionality, especially in the area of dynamic
storage space reservation and directory functionality in client-acquired storage spaces.

This document reflects the discussions and conclusions of a 2-day meeting in December
2002, as well as subsequent email correspondence and conference calls. The purpose of
this activity is to further define the functionality and standardize the interface of Storage
Resource Managers (SRMs) – a Grid middleware component. This document is a follow
up to the basic SRM design consideration document that describes the basic functionality
of SRM Version 2.0
(see http://sdm.lbl.gov/srm-wg/doc/SRM.v2.0.joint.func.design.doc).

The document is organized in four sections. The first, called “Defined Structures”
contain all the type definitions used to define the functions (or methods). The next 3
sections contain the specification of “Space Management Functions”, “Directory
Functions”, and “Data Transfer Functions”. All the “Space Management Functions”,
“Directory Functions” are newly added functions, and “Data Transfer Functions” are
slightly modified versions of the SRM V2.0 specification.

 underlined attributes are REQUIRED - 2 -

It is advisable to read the document SRM.v2.1.joint.func.design.doc posted at
http://sdm.lbl.gov/srm-wg before reading this specification, since the reasoning for the
decisions reflected in this specification are described there in detail.

Meaning of terms:
By “https” we mean http: protocol with GSI authentication. At this time, any
implementation of http with GSI authentication could be used. It is advisable that the
implementation is compatible with Globus Toolkit 3.0 or later versions.

• Primitive types used below are consistent with XML build- in schema types: i.e.
o long is 64bit: (+/-)9223372036854775807
o int is 32 bit : (+/-)2147483647
o short is 16 bit: (+/-)32767
o unsignedLong ranges (inclusive):0 to18446744073709551615
o unsignedInt ranges (inclusive): 0 to 4294967295
o unsignedShort ranges (inclusive): 0 to 65535

• The definition of the type “anyURI” used below is compliant with the XML

standard. See http://www.w3.org/TR/xmlschema-2/#anyURI. It is defined as:
"The lexical space of anyURI is finite- length character sequences which, when
the algorithm defined in Section 5.4 of [XML Linking Language] is applied to
them, result in strings which are legal URIs according to [RFC 2396], as amended
by [RFC 2732]".

• In “localSURLInfo”, we mean local to the SRM that is processing the request.

• TStorageSystemInfo is added in the arguments of functions srmPrepareToGet()

srmPrepareToPut() and srmCopy(). This is to simplify the case when all files sent
to the request share the same storageSystemInfo. If storageSystemInfo is provided
at the request level and the file level, SRM will use the one provided at the file
level.

 underlined attributes are REQUIRED - 3 -

Namespace SRM:

Notation: underlined attributes are REQUIRED.

Defined Structures:

enum TSpaceType {Volatile, Durable, Permanent}
enum TFileStorageType {Volatile, Durable, Permanent}

enum TFileType {File, Directory, Link}

enum TPermissionMode {NONE, X, W, WX, R, RX, RW, RWX}
enum TPermissionType {ADD, REMOVE, CHANGE}
enum TRequestType {PrepareToGet, PrepareToPut, Copy}
enum TOverwriteMode {Never, Always, WhenFilesAreDifferent}

typedef string TRequestToken
typedef string TSpaceToken
typedef string TUserID
typedef string TGroupID

typedef TPermissionMode TOwnerPermission

typedef struct { TUserID UserID,
 TPermissionMode mode} TUserPermission

typedef struct { TGroupID GroupID,
 TPermissionMode mode} TGroupPermission

typedef TPermissionMode TOtherPermission

typedef string TCheckSumType
typedef string TCheckSumValue

typedef unsigned long TSizeInBytes

typedef dataTime TGMTTime

// format is same as in XML dateTime type, except
// no local time extension is allowed.
// e.g. 1999-05-31T13:20:00 is ok,
// (for 1999 May 31st, 13:20PM, UTC)
// but 1999-05-31T13:20:00-5:00 is not.

typedef unsigned long TLifeTimeInSeconds
typedef anyURI TSURL // site URL

 underlined attributes are REQUIRED - 4 -

typedef anyURI TTURL // transfer URL

typedef struct {string path, // both dir and file
 TReturnStatus status,
 TSizeInBytes size, // 0 if dir
 TOwnerPermission ownerPermission,

TUserPermission[] userPermission,
TGroupPermission[] groupPermission,
TOtherPermission otherPermission

 TGMTTime createdAtTime,
 TGMTTime lastModificationTime,
 TUserID owner,
 TFileStorageType fileStorageType,
 TFileType type, // Directory or File
 TLifeTimeInSeconds lifetimeAssigned,
 TLifeTimeInSeconds lifetimeLeft,
 TCheckSumType checkSumType,
 TCheckSumValue checkSumValue,

TSURL originalSURL, // if path is a file
TMetaDataPathDetail[] subPath // optional recursive

} TMetaDataPathDetail

typedef struct {TSpaceType type,
 TSpaceToken spaceToken,
 Boolean isValid,

TuserID owner,
 TSizeInBytes totalSize, // best effort

TSizeInBytes GuaranteedSize,
 TSizeInBytes unusedSize,

 TLifeTimeInSeconds lifetimeAssigned,
 TLifeTimeInSeconds lifetimeLeft

} TMetaDataSpace

typedef string TStorageSystemInfo
// TstorageSystemInfo can contain but is not limited to the following:
// storage device, storage login ID, storage login authorization.

typedef struct {Boolean isSourceADirectory,
 Boolean allLevelRecursive, // default = false
 int numOfLevels // default = 1} TDirOption

typedef struct {TSURL SURLOrStFN,

TStorageSystemInfo storageSystemInfo} TSURLInfo

typedef struct {TSURLInfo fromSURLInfo,
 TLifeTimeInSeconds lifetime, // pin time

 underlined attributes are REQUIRED - 5 -

TFileStorageType fileStorageType,
TSpaceToken spaceToken,
TDirOption dirOption

} TGetFileRequest

typedef struct {TSURLInfo toSURLInfo, // local to SRM
 TLifeTimeInSeconds lifetime, // pin time
 TFileStorageType fileStorageType,

TSpaceToken spaceToken,
 TSizeInBytes knownSizeOfThisFile

} TPutFileRequest

typedef struct {TSURLInfo fromSURLInfo,
 TSURLInfo toSURLInfo,
 TLifeTimeInSeconds lifetime, // pin time
 TFileStorageType fileStorageType,
 TSpaceToken spaceToken,

TOverwriteMode overwriteMode,
TDirOption dirOption

} TCopyFileRequest

// In TGetFileRequest, TPutFileRequest, TCopyFileRequest:
// the default value of “lifetime”:
// for Volatile or Durable files will be the lifetime left in the space
// of the corresponding file type.
// the default value of “fileType” is Volatile.

// The following SRM status codes are explained at the end of this document.

enum TStatusCode { SRM_SUCCESS,

SRM_FAILURE,
 SRM_AUTHENTICATION_FAILURE,
 SRM_UNAUTHORIZED_ACCESS,
 SRM_INVALID_REQUEST,
 SRM_INVALID_PATH,
 SRM_FILE_LIFETIME_EXPIRED,
 SRM_SPACE_LIFETIME_EXPIRED,
 SRM_EXCEED_ALLOCATION,
 SRM_NO_USER_SPACE,
 SRM_NO_FREE_SPACE,
 SRM_DUPLICATION_ERROR,
 SRM_NON_EMPTY_DIRECTORY,
 SRM_TOO_MANY_RESULTS,
 SRM_INTERNAL_ERROR,
 SRM_FATAL_INTERNAL_ERROR,
 SRM_NOT_SUPPORTED,

 underlined attributes are REQUIRED - 6 -

 SRM_REQUEST_QUEUED,
 SRM_REQUEST_INPROGRESS,
 SRM_REQUEST_SUSPENDED,
 SRM_ ABORTED,
 SRM_ _RELEASED,
 SRM_FILE_PINNED,
 SRM_FILE_IN_CACHE,
 SRM_SPACE_AVAILABLE,
 SRM_LOWER_SPACE_GRANTED,
 SRM_ DONE,

SRM_CUSTOM_STATUS
}

typedef struct {TStatusCode statusCode,
 string explanation} TReturnStatus

typedef struct {TSURL surl,
 TReturnStatus status } TSURLReturnStatus

typedef struct {TSURL fromSURLInfo,
 TSizeInBytes fileSize,
 TReturnStatus status,
 TLifeTimeInSeconds estimatedWaitTimeOnQueue,

TLifeTimeInSeconds estimatedProcessingTime,
TTURL transferURL
TLifeTimeInSeconds remainingPinTime

} TGetRequestFileStatus

typedef struct { TSizeInBytes fileSize,
 TReturnStatus status,
 TLifeTimeInSeconds estimatedWaitTimeOnQueue,

TLifeTimeInSeconds estimatedProcessingTime,
TTURL transferURL,
TSURL siteURL, // for future reference
TLifeTimeInSeconds remainingPinTime

} TPutRequestFileStatus

typedef struct {TSURL fromSURL,
 TSURL toSURL,
 TSizeInBytes fileSize,
 TReturnStatus status,
 TLifeTimeInSeconds estimatedWaitTimeOnQueue,

TLifeTimeInSeconds estimatedProcessingTime,
TLifeTimeInSeconds remainingPinTime

} TCopyRequestFileStatus

 underlined attributes are REQUIRED - 7 -

typedef struct {TRequestToken requestToken,
 TRequestType requestType,
 int totalFilesInThisRequest,
 int numOfQueuedRequests,
 int numOfFinishedRequests,
 int numOfProgressingRequests,
 Boolean isSuspended

} TRequestSummary

typedef struct {TSURL surl,
 TReturnStatus status,
 TPermissionType userPermission

} TSURLPermissionReturn

typedef struct {TRequestToken requestToken,
 TGMTTime createdAtTime

} TRequestTokenReturn

notes:

• StorageSystemInfo is a string that contains the login and password required by
the storage system. For example, it might have the form of login:pwd@hostname,
where “:” is a reserved separator between login and pwd. If hostname is not
provided, it is defaulted to what’s in the accompanying site URL or the host of
SRM.

• TMetaDataSpace can refer to a single space of each type (i.e. volatile, durable,
permanent). It does not include the extra space needed to hold the directory
structures.

• Regarding file sharing by the SRM, it is a local implementation decision. An SRM
can choose to share files by proving multiple users access to the same physical
file, or by copying a file into another user’s space. Either way, if an SRM chooses
to share a file (that is, avoid reading a file over again from the source site) the
SRM should check with the source site whether the user has a read/write
permission. Only if permission is granted, the file can be shared.

• The type definition SURL above is used for both site URL and the “Storage File
Name” (stFN). This was done in order to simplify the notation. Recall that stFN
is the file path/name of the intended storage location when a file is put (or copied)
into an SRM controlled space. Thus, a stFN can be thought of a special case of
an SURL, where the protocol is assumed to be “srm” and the machine:port is
assumed to be local to the SRM. For example, when the request srmCopy is
made, the source file is specified by a site URL, and the target location can be
optionally specified as a stFN. By considering the stFN a special case of an
SURL, an srmCopy takes SURLs as both the source and target parameters.

• The requestToken assigned by SRM is unique and immutable (non-reusable). For
example, if the date:time is part of the requestToken it will be immutable.

 underlined attributes are REQUIRED - 8 -

Function specification:

Space Management Functions:

summary:
 srmReserveSpace
 srmReleaseSpace
 srmUpdateSpace(includes size and time)

srmCompactSpace:

srmGetSpaceMetaData:

srmChangeFileStorageType:

srmGetSpaceToken:

details:

srmReserveSpace:
 In: TUserID userID,

TSpaceType typeOfSpace,
String userSpaceTokenDescription,
TSizeInBytes sizeOfTotalSpaceDesired,
TSizeInBytes sizeOfGuaranteedSpaceDesired,
TLifeTimeInSeconds lifetimeOfSpaceToReserve,
TStorageSystemInfo storageSystemInfo

 Out: TSpaceType typeOfReservedSpace,
TSizeInBytes sizeOfTotalReservedSpace, // best effort
TSizeInBytes sizeOfGuaranteedReservedSpace,
TLifeTimeInSeconds lifetimeOfReservedSpace,
TSpaceToken, referenceHandleOfReservedSpace,
TReturnStatus returnStatus

 notes:
• lifetimeOfSpaceToReserve is not needed if requesting permanent space.
• SRM can provide default size and lifetime if not supplied.
• storageSystemInfo is optional in case storage system requires additional security

check.
• If sizeOfTotalSpaceDesired is not specified, the SRM will return its default quota.

srmReleaseSpace:

 underlined attributes are REQUIRED - 9 -

 In: TUserID userID,
TSpaceToken spaceToken,
TStorageSystemInfo storageSystemInfo,

 Boolean forceFileRelease

Out: TReturnStatus returnStatus

notes:

• forceFileRelease=false is default. This means that the space will not be released
if it has files that are still pinned in the space. To release the space regardless of
the files it contains and their status forceFileRelease=true must be specified.

• To be safe, a request to release a reserved space that has an on-going file transfer
will return false, even forceFileRelease= true.

• When space is releasable and forceFileRelease=true, all the files in the space are
released, even in durable or permanent space.

• When space is released, the files in that space are treated according to their
types: If permanent, keep it. If durable, perform action at the end of lifetime. If
Volatile, release it at the end of lifetime.

srmUpdateSpace(includes size and time)
 In: TUserID userID,

TSpaceToken spaceToken,
TSizeInBytes newSizeOfTotalSpaceDesired,
TSizeInBytes newSizeOfGuaranteedSpaceDesired,
TLifeTimeInSeconds newLifeTimeFromCallingTime,
TStorageSystemInfo storageSystemInfo

 Out:

TSizeInBytes sizeOfTotalSpace, // best effort
TSizeInBytes sizeOfGuaranteedSpace,

 TLifeTimeInSeconds lifetimeGranted,
TReturnStatus returnStatus

notes:
• If neither size nor lifetime are supplied in the input, then return will be null.
• newSize is the new actual size of the space, so has to be positive.
• newLifetimeFromCallingTime is the new lifetime requested regardless of the

previous lifetime, and has to be positive. It might even be shorter than the
remaining lifetime at the time of the call.

srmCompactSpace:
 In: TUserID userID,

TSpaceToken spaceToken,
TStorageSystemInfo storageSystemInfo,

 Boolean doDynamicCompactFromNowOn

 underlined attributes are REQUIRED - 10 -

Out: TSizeInBytes newSizeOfThisSpace,
TReturnStatus returnStatus

notes:

• This function is called to reclaim the space for all released files and update space
size in Durable and Permanent spaces. Files not released are not going to be
removed (even if lifetime expired.)

• doDynamicCompactFromNowOn=false by default, which implies that only a one
time compactSpace will take place.

• If doDynamicCompactFromNowOn=true, then the space of released files will be
automatically compacted until the value of doDynamicCompactFromNowOn is
set to false.

• When space is compacted, the files in that space do not have to be removed by the
SRM. For example, the SRM can choose to move them to volatile space. The
client will only perceive that the compacted space is now available to them.

• To physically force a removal of a file, the client should use srmRm.

srmGetSpaceMetaData:
 In: TUserID userID,

TSpaceToken[] arrayOfSpaceToken

 Out: TMetaDataSpace[] arrayOfSpaceDetails
TReturnStatus returnStatus

srmChangeFileStorageType: (applies to both dir and file)
 In: TUserID userID,

TSURLInfo[] arrayOfPath,
 TFileStorageType desiredStorageType

 Out: TSURLReturnStatus [] returnStatus

notes:

• Either path must be supplied.
• If a path is pointing to a directory, then the effect is recursive for all the files in

this directory.
• Space allocation and de-allocation maybe involved.

srmGetSpaceToken:
 In: string userSpaceTokenDescription,
 TUserID userID

 Out: TSpaceToken[] arrayOfPossibleSpaceTokens

TReturnStatus returnStatus

 underlined attributes are REQUIRED - 11 -

notes:

• If userSpaceTokenDescription is null, returns all space tokens this user owns
• If the user assigned the same name to multiple space reservations, he may get

back multiple space tokens.

Permission Functions:

summary:
srmSetPermission: (applies to both dir and file)
srmReassignToUser:
srmCheckPermission:

details:

srmSetPermission: (applies to both dir and file)
 In: TUserID userID,

TSURLInfo path,
TPermissionType permissionType,
TOwnerPermission ownerPermission,
TUserPermission[] userPermission,
TGroupPermission[] groupPermission,
TOtherPermission otherPermission

Out: TReturnStatus returnStatus

Notes:
• Support for srmSetPermission is optional.
• In this version, TPermissionMode is identical to Unix permission modes.
• User permissions are provided in order to support dynamic user-level permission

assignment similar to Access Control Lists (ACLs).
• Permissions can be assigned to set of users and sets of groups, but only a single

owner.
• In this version, SRMs do not provide any group operations (setup, modify,

remove, etc.)
• Groups are assumed to be setup before srmSetPermission is used.
• If TPermissionType is ADD or CHANGE, and TPermissionMode is null, then it

is assumed that TPermissionMode is READ only.
• If TPermissionType is REMOVE, then the TPermissionMode is ignored.

srmReassignToUser:
 In: TUserID userID,

string assignedUser,

 underlined attributes are REQUIRED - 12 -

 TLifeTimeInSeconds lifeTimeOfThisAssignment,
 TSURLInfo path // file or dir

 Out: TReturnStatus returnStatus

notes:

• After lifeTimeOfThisAssignment time period, or when assignedUser obtained a
copy of files through srmCopy(), the files involved are released and space is
compacted automatically, which ever is first.

• This function implies actual lifetime of file/space involved is extended up to the
lifeTimeOfThisAssignment.

• The caller must be the owner of the files to be reassigned.
• permission is omitted because it has to be READ permission.
• lifeTimeOfThisAssignment is relative to the calling time. So it must be positive.
• If the path here is a directory, then all the files under it are included recursively.
• If there are any files involved that are released before this function call, then

these files will not be involved in reassignment, even if they are still in the space.
• If a compact() is called before this function is complete, then this function has

priority over compact(). Compact will be done automatically as soon as files are
copies to the assignedUser. Whether to dynamically compact or not is an
implementation choice.

srmCheckPermission:
 In: TSURLInfo[] arrayOfSiteURL
 TUserID userID,
 Boolean checkInLocalCacheOnly // default: false

 Out: TSURLPermissionReturn [] arrayOfPermissions

TReturnStatus returnStatus

notes:

• When checkInLocalCacheOnly=true, then SRM will only check files in its local
cache. Otherwise, if a file is not in its local cache, then SRM will go to the
siteURL to check the user permission.

• If checkInLocalCacheOnly = false, SRM can choose to always check the siteURL
for user permission of each file. It is also ok if SRM choose to check its local
cache first, if a file exists and the user has permission, return that permission.
Otherwise, check the siteURL and return permission.

Directory Functions:

summary:
srmMkdir:
srmRmdir: (applies to dir)
srmRm: (applies to file)

 underlined attributes are REQUIRED - 13 -

srmLs: (applies to both dir and file)
srmMv: (applies to both dir and file)

details:

srmMkdir:
 In: TUserID userID,

TSURLInfo directoryPath

Out: TReturnStatus returnStatus

notes:

• Consistent with unix, recursive creation of directories is not supported.
• newDiretoryPath can include paths, as long as all sub directories exist.

srmRmdir: (applies to dir)
 In: TUserID userID,

TSURLInfo directoryPath,
 boolean recursive

Out: TReturnStatus returnStatus

notes:

• doRecursiveRemove is false by default.
• To distinguish from srmRm(), this function is for directories only.

srmRm: (applies to files)
 In: TUserID userID,

TSURLInfo[] arrayOfFilePaths

 Out: TSURLReturnStatus [] returnStatusOfAllFiles
notes:

• To distinguish from srmRmDir(), this function applies to files only.

srmLs: (applies to both dir and file)
 In: TUserID userID,

TSURLInfo[] path,
 TFileStorageType fileStorageType,
 boolean fullDetailedList,

boolean allLevelRecursive,
int numOfLevels,
int offset,
int count

 underlined attributes are REQUIRED - 14 -

 Out: TMetaDataPathDetail[] details,
TReturnStatus returnStatus

notes:
• fullDetailedList=false by default.

o For directories, only path is required to be returned.
o For files, path and size are required to be returned.

• If fullDetailedList=true, the full details are returned.
o For directories, path and userPermission are required to be returned.
o For files, path, size, userPermission, lastModificationTime,

typeOfThisFile, and lifetimeLeft are required to be returned, similar to
unix command ls –l.

• If allLevelRecursive=true then file lists of all level below current will be provided
as well.

• If allLevelRecursive is "true" it dominates, i.e. ignore numOfLevels. If
allLevelRecursive is "false" or missing, then do numOfLevels. If numOfLevels is
"0" (zero) or missing, assume a single level. If both allLevelRecursive and
numOfLevels are missing, assume a single level.

• When listing for a particular type specified by “fileStorageType”, only the files
with that type will be in the output.

• Empty directories will be returned.
• We recommend width first in the listing.
• We recommend that list of directories come before list of files in the return array

(details).

srmMv: (applies to both dir and file)
 In: TUserID userID,

TSURLInfo fromPath,
 TSURLInfo toPath

Out: TReturnStatus returnStatus

notes:
• Authorization checks need to be performed on both fromPath and toPath.

Data Transfer Functions:

summary:
srmPrepareToGet:
srmPrepareToPut:
srmCopy:

srmReleaseFiles: (dir is ok. Will release recursively for dirs)

 underlined attributes are REQUIRED - 15 -

srmRemoveFiles:
srmPutDone:

srmAbortRequest:
srmAbortFiles:
srmSuspendRequest:
srmResumeRequest:

srmStatusOfGetRequest:
srmStatusOfPutRequest:
srmStatusOfCopyRequest:

srmGetRequestSummary:

srmExtendFileLifeTime:
srmGetRequestID:

details:

srmPrepareToGet:
 In: TUserID userID,

TGetFileRequest[] arrayOfFileRequest,
 string[] arrayOfTransferProtocols,
 string userRequestDescription,

TStorageSystemInfo storageSystemInfo,
 TLifeTimeInSeconds TotalRetryTime

 Out: TRequestToken requestToken,
 TGetRequestFileStatus[] arrayOfFileStatus
notes:

• The userRequestDescription is a user designated name for the request. It can be
used in the getRequestID method to get back the system assigned request ID.

• Only pull mode is supported.
• SRM assigns the requestToken at this time.
• Normally this call will be followed by srmRelease().
• “retryTime” means: if all the file transfer for this request are complete, then try

previously failed transfers for a total time period of “retryTime”.
• In case that the retries fail, the return should include an explanation of why the

retries failed.
• This call is an asynchronous (non-blocking) call. To get subsequent status and

results, separate calls should be made.
• When the file is ready for the user, the file is implicitly pinned in the cache and

lifetime will be enforced.
• The invocation of srmReleaseFile() is expected for finished files later on.

srmPrepareToPut:

 underlined attributes are REQUIRED - 16 -

 In: TUserID userID,
TPutFileRequest[] arrayOfFileRequest,

 string[] arrayOfTransferProtocols,
string userRequestDescription,

 TOverwriteMode overwriteOption,
 TStorageSystemInfo storageSystemInfo,
 TLifeTimeInSeconds TotalRetryTime

 Out: TRequestToken requestToken,
 TPutRequestFileStatus[] arrayOfFileStatus
notes:

• Only push mode is supported for srmPrepareToPut.
• StFN (“toSURLInfo” in the TPutFileRequest) has to be local. If stFN is not

specified, SRM will name it automatically and put it in the specified user space.
This will be returned as part of the “transfer URL”.

• srmPutDone() is expected after each file is “put” into the allocated space.
• The lifetime of the file starts as soon as SRM get the srmPutDone(). If

srmPutDone() is not provided then the files in that space are subject to removal
when the space lifetime expires.

• “retryTime” is meaningful here only when the file destination is not a local disk,
such as tape or MSS.

• In case that the retries fail, the return should include an explanation of why the
retires failed.

srmCopy:
 In: TUserID userID,

TCopyFileRequest[] arrayOfFileRequest,
 string userRequestDescription,
 TOverwriteMode overwriteOption,
 Boolean removeSourceFiles (default = false),
 TStorageSystemInfo storageSystemInfo,
 TLifeTimeInSeconds TotalRetryTime

 Out: TRequestToken requestToken,
 TCopyRequestFileStatus[] arrayOfFileStatus
notes:

• Pull mode: copy from remote location to SRM. (e.g. from remote to MSS.)
• Push mode: copy from SRM to remote location.
• Always release files from source after copy is done.
• When removeSourceFiles=true, then SRM will remove the source files on behalf

of the caller after copy is done.
• In pull mode, send srmRelease() to remote location when transfer is done.

 underlined attributes are REQUIRED - 17 -

• If in push mode, then after transfer is done, notify the caller. User can then
release the file. If user releases a file being copied to another location before it is
done, then refuse to release.

• Note there is no protocol negotiation with the client for this request.
• “retryTime” means: if all the file transfer for this request are complete, then try

previously failed transfers for a total time period of “retryTime”.
• In case that the retries fail, the return should include an explanation of why the

retires failed.
• When both fromSURL and toSURL are local, perform local copy
• Empty directories are copied as well.

srmRemoveFiles:
 In: TRequestToken requestToken,
 TUserID userID,
 TSURL[] siteURLs

 Out: TSURLReturnStatus[] arrayOfReturnStatus
notes:

• If requestToken is not provided, then the SRM will do nothing.
• It has the effect of a release before the file is removed.
• If file is not in cache, do nothing

srmReleaseFiles:
 In: TRequestToken requestToken,
 TUserID userID,
 TSURL[] siteURLs,
 Boolean keepSpace

 Out: TSURLReturnStatus[] arrayOfReturnStatus

notes:

• If requestToken is not provided, then the SRM will release all the files specified
by the siteURLs owned by this user, regardless of the requestToken.

• If requestToken is not provided, then userID is needed. It may be inferred or
provide in the call.

• Releasing files will be followed by compacting space, if
doDynamicCompactFromNowOn was set to true in a previous srmCompactSpace
call.

srmPutDone:
 In: TRequestToken requestToken,
 TUserID userID,
 TSURL[] arrayOfSiteURL

 underlined attributes are REQUIRED - 18 -

 Out: TSURLReturnStatus[] arrayOfReturnStatus

notes:

• Called by user after srmPut()

srmAbortRequest:
 In: TRequestToken requestToken,
 TUserID userID

 Out: TReturnStatus returnStatus
notes:

• Abort all files in this request regardless of the state. Expired files are released.

srmAbortFiles
 In: TRequestToken requestToken,
 TSURL[] arrayOfSiteURLs,
 TUserID userID

 Out: TSURLReturnStatus[] arrayOfReturnStatus

notes:

• Abort all files in this call regardless of the state

srmSuspendRequest:

In: TRequestToken requestToken
 TUserID userID

Out: TReturnStatus returnStatus

notes:

• Suspend all files in this request until srmResumeRequest is issued

srmResumeRequest:

In: TRequestToken requestToken,
 TUserID userID

Out: TReturnStatus returnStatus

notes:
• Resume suspended files in this request

srmStatusOfGetRequest:
 In: TRequestToken requestToken,
 TUserID userID
 TSURL[] arrayOfFromSURLs,

 underlined attributes are REQUIRED - 19 -

 Out: TGetRequestFileStatus[] arrayOfFileStatus
notes:

• If arrayOfFromSURLs is not provided, returns status for all the file requests in
this request.

srmStatusOfPutRequest:
 In: TRequestToken requestToken,
 TUserID userID
 TSURL[] arrayOfToSURLs,

 Out: TPutRequestFileStatus[] arrayOfFileStatus
notes:

• If arrayOfFromSURLs is not provided, returns status for all the file requests in
this request.

srmStatusOfCopyRequest:
 In: TRequestToken requestToken,
 TUserID userID
 TSURL[] arrayOfFromSURLs,
 TSURL[] arrayOfToSURLs,

 Out: TCopyRequestFileStatus[] arrayOfFileStatus
notes:

• If arrayOfFromSURLs and/or arrayOfToSURLs are not provided, return status
for all the file requests in this request.

srmGetRequestSummary:
 In: TRequestToken[] arrayOfRequestToken,
 TUserID userID

 Out: TRequestSummary[] arrayOfRequestSummary

TReturnStatus returnStatus

srmExtendFileLifeTime:
 In: TRequestToken requestToken,
 TSURL siteURL,
 TUserID userID,
 TLifeTimeInSeconds newLifeTime

 Out: TReturnStatus returnStatus,
 TLifeTimeInSeconds newTimeExtended
notes:

• newLifeTime is relative to the calling time. Lifetime will be set from the calling
time for the specified period.

 underlined attributes are REQUIRED - 20 -

• The number of lifetime extensions maybe limited by SRM according to its policies.
• IsExtended = false if SRM refuse to do it. (set newTimeExtended = 0 in this case.)
• If original lifetime is longer than the requested one, then the requested one will be

assigned.
• If newLifeTime is not specified, the SRM can use its default to assign the

newLifeTime.

srmGetRequestID:
 In: string userRequestDescription,
 TUserID userID

Out: TRequestTokenReturn[] arrayOfRequestToken
TReturnStatus returnStatus

notes:

• If userRequestDescription is null, returns all requests this user has.
• If the user assigned the same name to multiple requests, he may get back multiple

request IDs each with the time the request was made.

StatusCode specification:

Note:

• Status codes represent errors, warnings and status.

Status code Explanation

SRM_SUCCESS:

• SRM request was successful

Errors:

SRM_FAILURE :

• Requested operation failed for unspecified reason, and
additional info is in the explanation string.

SRM_AUTHENTICATION_FAILURE:
• Requester has an invalid authentication information.

SRM_UNAUTHORIZED_ACCESS:
• Requester has no permissions for the operation (although the

user could have a valid authentication information).
SRM_INVALID_REQUEST:

• The request is invalid, and additional information may be
provided in the explanation string. For example,

 underlined attributes are REQUIRED - 21 -

o The request token is invalid
o The requested life time of a file is longer than the

lifetime of the space.
SRM_INVALID_PATH:

• The requested file/directory path is invalid.
SRM_FILE_LIFETIME_EXPIRED:

• The life time on the pinned file has expired
SRM_SPACE_LIFETIME_EXPIRED:

• The life time on the reserved space has expired
SRM_EXCEED_ALLOCATION:

• Requester exceeded allocation (number of requests, files or
spaces), and the request cannot be placed.

SRM_NO_USER_SPACE:
• The requester does not have enough space to put the file into

that space.
SRM_NO_FREE_SPACE:

• SRM has not more space.
SRM_DUPLICATION_ERROR :

• Requester tried to create a new file or directory that already
exists.

SRM_NON_EMPTY_DIRECTORY:
• Requester tried to remove a non-empty directory without the

recursive option set.
SRM_TOO_MANY_RESULTS:

• The request produced too many results; for example, as a
result of srmLs. The term “too many” is determined by each
SRM , and the detailed information, such as the supported max
number of results can be returned in the explanation string.

SRM_INTERNAL_ERROR:
• SRM has an internal error temporarily. Client may try again.

SRM_FATAL_INTERNAL_ERROR:
• SRM has a severe internal error that cannot be recovered.

SRM_NOT_SUPPORTED:
• SRM implementation does not support this functionality that

client requested.

Status:

SRM_REQUEST_QUEUED
SRM_REQUEST_INPROGRESS
SRM_REQUEST_SUSPENDEND
SRM _ABORTED
SRM _RELEASED

 underlined attributes are REQUIRED - 22 -

SRM_FILE_PINNED
• The requested file is pinned

SRM_FILE_IN_CACHE
• The file is in cache, but not pinned

SRM_SPACE_AVAILABLE
• The requested space is reserved and ready to be used

SRM_LOWER_SPACE_GRANTED
• The requested space is not ready, but lower sized space is

granted.
SRM _DONE
SRM_CUSTOM_STATUS:

• SRM has a site specific status information. The details are
described in the explanation string.

Appendix:

SRM WSDL discovery method

May 1, 2003

A) SURL format:
srm://host[:port]/[soap_end_point_path?SFN=]site_file_name

where […] means optional, and letters in bold are fixed.

We note if the SURL contains the soap_end_point_path, then it is not possible to change
the soap endpoint without changing all the previously published SURLs.

Example SURLs:

Without soap_end_point_path:
srm://dm.lbl.gov:4001/ABC/file_x

with soap_end_point_path:
srm://dm.lbl.gov:4001/srm_servlet?SFN=ABC/file_x

B) Given that soap-end-point-path clause is provided, then the soap endpoint is:
https://host[:port]/soap_end_point_path

C) If port is missing, the default port assumed is 8443, which is the port for https with
GSI.

 underlined attributes are REQUIRED - 23 -

The discussion below assumes no endpoint in the SURL, and shows how the soap
endpoints and wsdl can be found given an SURL

Issues:

1. We wish to have a way of finding the SRM WSDL for multiple versions from the
SURL.

2. We wish to support clients that know what SRM version they want to use. For

example, a client that uses version 1.1, should be able to got the WSDL and/or the
SOAP endpoint for it directly.

3. We wish to have a default where an SRM version number is not mentioned. The

version returned in this case is whatever the SRM currently supports, or if
multiple versions are supported, the SRM chooses what to return.

4. We wish to allow a file accessed by a previous SRM version to be accessed by a

future SRM version without having to change the SURL. Furthermore, if the file
can be accessed by either version simultaneously (that depend on the SRM
implementation) that should be possible too.

5. We wish to have a way for a client to find out which version the SRM supports

and the endpoint without having to read the WSDL. This is necessary in a
changing world, where new version can be introduced.

6. We wish to have a client that can use multiple SRM versions to find out which

SRM version is supported by the SRM. This is probably the most realistic
scenario, since we cannot expect all SRMs to support the same version at any one
time.

7. We wish to have a client find out which SRM versions are supported for

accessing a particular file, in case that files can be accessed by multiple SRM
versions simultaneously. This is related to point 3 above.

This is a long wish list, but the proposed solution is simple. We assume that the WSDL
will contain the version number. First, we propose that every SRM WSDL starts with:
SRM version number--> (e.g. <!--SRM version 2.1.3-->)

Now, the solution is as follows:

Give an SURL: srm://host[:port]/path/file (e.g. srm://dm.lbl.gov:4001/ABC/file_x)
The following can be derived:

Case 1)
For clients that know what SRM versions they want to use:
https://host:port/srm/srm.version.wsdl

 underlined attributes are REQUIRED - 24 -

https://host:port/srm/srm.ve rsion.endpoint

For example, given the SURL above, and the client uses version 1.1, you derive:
https://dm.lbl.gov:4001/srm/srm.1.1.wsdl
https://dm.lbl.gov:4001/srm/srm.1.1.endpoint

Note: the endpoint returned can be any URI, e.g.:
https://gizmo.lbl.gov:10001/srm/v1.0
or: https://dm.lbl.gov:12345/servlet/srm.1.1)

Case 2)

For clients that don’t know the version, and want to use the default:
https://host:port/srm/srm.wsdl
https://host:port/srm/srm.endpoint

For the example above:
https://dm.lbl.gov:4001/srm/srm.wsdl
https://dm.lbl.gov:4001/srm/srm.endpoint

Case 3)

For clients that want to find out the SRM version and endpoint without getting the
entire WSDL:
https://host:port/srm/srm.info

The srm.info file will contain:
<!--SRM version number-- --srmEndpoint-->
For example:
<!--SRM version 2.1.3-- -- https://gizmo.lbl.gov:10001/srm-->

Case 4)

For servers that support multiple srm version accessing the SAME file:
The same format as above repeating for each srm version.
For example:
<!--SRM version 1.1-- -- https://sdm.lbl.gov:5005/srm-->
<!--SRM version 2.1.3-- -- https://gizmo.lbl.gov:10001/srm-->

To summarize, the following is what should be supported for WSDL and endpoint
discovery:

Given an SURL:
srm://host[:port]/site_file_name

The following can be derived:

a) https://host[:port]/srm/srm[.version].wsdl
b) https://host[:port]/srm/srm[.version].endpoint

 underlined attributes are REQUIRED - 25 -

c) https://host[:port]/srm/srm.info
Where the content have the format repeated as many time as there are supported versions:
<!--SRM version number-- --srmEndpoint-->
